1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

General Description

The MAX848/MAX849 boost converters set a new standard of high efficiency and high integration for noisesensitive power-supply applications, such as portable phones and small systems with RF data links. The heart of the these devices is a synchronous boost-topology regulator that generates a fixed 3.3 V output (or 2.7 V to 5.5 V adjustable output) from one to three $\mathrm{NiCd} / \mathrm{NiMH}$ cells or one Li-lon cell.
Synchronous rectification provides a 5\% efficiency improvement over similar nonsynchronous boost regulators. In standby mode, pulse-skipping PFM operation keeps the output voltage alive with only $150 \mu \mathrm{~W}$ quiescent power consumption. Fixed-frequency PWM operation ensures that the switching noise spectrum is limited to the 300 kHz fundamental and its harmonics, allowing easy post-filtering noise reduction. For even tighter noise spectrum control, synchronize to a 200 kHz to 400 kHz external clock.
Battery monitoring is provided by a two-channel, volt-age-to-frequency analog-to-digital converter (ADC). One channel is intended for a single-cell battery input $(0.625 \mathrm{~V}$ to 1.875 V range), while the other channel is for monitoring higher voltages (0 V to 2.5 V range).
Two control inputs are provided for push-on, push-off control via a momentary pushbutton switch. Upon power-up, an internal comparator monitors the output voltage to generate a power-good output (POK).
The devices differ only in the current limit of the N-channel MOSFET power switch: 0.8A for the MAX848, and 1.4A for the MAX849.

Typical Output Selector Guide

VIN (\mathbf{V})	VOUT (\mathbf{V})	MAX849 IOUT $(\mathbf{m A})$	MAX848 IOUT $(\mathbf{m A})$
0.9	3.3	100	70
	5	70	40
1.2	3.3	300	110
	5	200	70
2.4	3.3	750	200
	5	500	130
2.7	3.3	800	250
	5	600	150
3.6	5	1000	300

Pin Configuration appears at end of data sheet.
Dual Mode is a trademark of Maxim Integrated Products.

Features

- Up to 95\% Efficiency
(see Typical Output Selector Guide below)
- 3.3V Dual Mode ${ }^{\text {TM }}$ or 2.7 V to 5.5 V Adj. Output
-0.7V to 5.5V Input Range
- 0.15 mW Standby Mode
- 300kHz PWM Mode or Synchronizable
- Two-Channel ADC with Serial Output
- Power-Good Function

	Applications

PCS Phones
Hand-Held Instruments
Personal Communicators

Local 3.3V to 5V Supplies
Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX848ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX849ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO

Typical Operating Circuit

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

ABSOLUTE MAXIMUM RATINGS

ON1, ON2, OUT, POUT to GND..................................-0.3V, +6V
PGND to GND
$-0.3 \mathrm{~V},+0.3 \mathrm{~V}$
LX to PGND
$-0.3 \mathrm{~V},\left(\mathrm{~V}_{\text {POUT }}+0.3 \mathrm{~V}\right)$
CLK/SEL, DATA, POKIN, REF
AINSEL, AIN1, AIN2, FB, POK to GND-0.3V, (Vout + 0.3V)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
Narrow SO (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .696 mW

Operating Temperature Range MAX848ESE/MAX849ESE Junction Temperature. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $+150^{\circ} \mathrm{C}$ Storage Temperature.. $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\right.$ VOUT $=3.6 \mathrm{~V}, \mathrm{GND}=\mathrm{PGND}=\mathrm{CLK} / \mathrm{SEL}=\mathrm{ON} 1=\overline{\mathrm{ON} 2}=\mathrm{AINSEL}=\mathrm{AIN} 1=\mathrm{AIN2}=\mathrm{FB}=\mathrm{POKIN}, \mathrm{POUT}=\mathrm{OUT}, \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Minimum Operating Voltage (Note 1)					0.7		V
REFERENCE							
Reference Output Voltage	$\mathrm{I}_{\text {REF }}=0 \mathrm{~mA}$			1.23	1.25	1.27	V
REF Load Regulation	$-1 \mu \mathrm{~A}<\mathrm{I}_{\text {REF }}<50 \mu \mathrm{~A}$				5	15	mV
REF Supply Rejection	2.5 V < V ${ }_{\text {OUT }}<5 \mathrm{~V}$				0.2	5	mV
DC-DC CONVERTER							
Output Voltage (Note 2)	$\mathrm{V}_{\mathrm{FB}}<0.1 \mathrm{~V}, \mathrm{CLK} / \mathrm{SEL}=\mathrm{OUT}$			3.17	3.34	3.40	V
Output Current	$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$	VOUT $=3.3 \mathrm{~V}$	MAX848		110		mA
			MAX849		300		
		VOUT $=5 \mathrm{~V}$	MAX848		70		
			MAX849		200		
	V IN $=2.4 \mathrm{~V}$	VOUT $=3.3 \mathrm{~V}$	MAX848		200		
			MAX849		750		
		VOUT $=5 \mathrm{~V}$	MAX848		130		
			MAX849		500		
	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	VOUT $=3.3 \mathrm{~V}$	MAX848		250		
			MAX849		600		
		Vout $=5 \mathrm{~V}$	MAX848		150		
			MAX849		800		
	VOUT $=5 \mathrm{~V}$	MAX848, $\mathrm{V}^{\text {IN }}=3.3 \mathrm{~V}$			300		
		MAX849, $\mathrm{V}_{\text {IN }}$.6V		1000		
FB Regulation Voltage	Adjustable output, CLK/SEL = OUT			1.215	1.240	1.265	V
FB Input Current	$\mathrm{V}_{\mathrm{FB}}=1.25 \mathrm{~V}$					200	nA
Output Voltage Adjust Range	(Note 3)			2.7		5.5	V
Output Voltage Lockout Range				2.1		2.4	V
Load Regulation (Note 4)	CLK/SEL = OUT				-1.6		\%
Minimum Start-Up Voltage (Note 5)	ILOAD $<1 \mathrm{~mA}, \mathrm{~T}_{\text {A }}>+25^{\circ} \mathrm{C}$				0.9	1.1	V
Frequency in Start-Up Mode	VOUT $=1.5 \mathrm{~V}$			40		300	kHz
Operating Current in Shutdown	Current into OUT pin, $\mathrm{V} \overline{\mathrm{ON} 2}=3.6 \mathrm{~V}$				4	20	$\mu \mathrm{A}$

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

ELECTRICAL CHARACTERISTICS (continued)

(VOUT $=3.6 \mathrm{~V}, \mathrm{GND}=\mathrm{PGND}=\mathrm{CLK} / \mathrm{SEL}=\mathrm{ON} 1=\overline{\mathrm{ON} 2}=\mathrm{AINSEL}=\mathrm{AIN} 1=\mathrm{AIN} 2=\mathrm{FB}=\mathrm{POKIN}, \mathrm{POUT}=\mathrm{OUT}, \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Current in Low-Power Mode (Note 6)	Current into OUT pin, CLK/SEL = GND			35	90	$\mu \mathrm{A}$
Operating Current in Low-Noise Mode (Note 6)	Current into OUT pin, CLK/SEL = OUT, does not include switching losses			150	300	$\mu \mathrm{A}$
DC-DC SWITCHES						
POUT Leakage Current	$\mathrm{V}_{\mathrm{LX}}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{ON} 2}}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			0.1	20	$\mu \mathrm{A}$
LX Leakage Current	$\mathrm{V}_{\mathrm{LX}}=\mathrm{V}_{\overline{\mathrm{ON} 2}}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			0.1	20	$\mu \mathrm{A}$
Switch On-Resistance	N-channel	CLK/SEL = GND		0.3	0.6	Ω
		CLK/SEL = OUT		0.13	0.25	
	P-channel	CLK/SEL = OUT		0.25	0.5	
N-Channel Current Limit	CLK/SEL = OUT	MAX848	600	800	1000	mA
		MAX849	1100	1350	1600	
	VCLK/SEL $=0 \mathrm{~V}$ (Note 7)	MAX848	120	200	300	
		MAX849	250	400	550	

ADC

Data Output Voltage Low	ISINK $=1 \mathrm{~mA}$		0.4	V
Data Output Voltage High	ISOURCE $=1 \mathrm{~mA}$	VOUT -0.4	V	
AIN1 Input Voltage Range	AINSEL $=$ GND	0.625	1.875	V
AIN2 Input Voltage Range	AINSEL $=$ OUT	0	2.5	V
AIN1, AIN2 Input Current	fCLK $=400 \mathrm{kHz}$, VAIN1 $=$ VAIN2 $=2.5 \mathrm{~V}$		1	$\mu \mathrm{~A}$
Accuracy	fCLK $=400 \mathrm{kHz}, 5 \mathrm{~ms}$ conversion, monotonic to 8 bits		± 4	\% FSR

POWER-GOOD

$\left.\begin{array}{|l|l|cc|c|}\hline \text { Internal Trip Level } & \text { Rising VOUT, VPOKIN }<0.1 \mathrm{~V} & 2.95 & 3.10 & \mathrm{~V} \\ \hline \text { External Trip Level } & \text { Rising VPOKIN } & 1.225 & 1.275 & \mathrm{~V} \\ \hline \text { POK Low Voltage } & \begin{array}{l}\text { ISINK }=1 \mathrm{~mA}, \text { VOUT }=3.6 \mathrm{~V} \text { or } \\ \text { ISINK }=20 \mu A, ~ V O U T ~\end{array}=1 \mathrm{~V}\end{array}\right)$

LOGIC AND CONTROL INPUTS

Input Low Voltage	1.2 V < Vout < 5.5V, ON1 and $\overline{\text { ON2 }}$ (Note 8)			2Vout	V
	VOUT $=2.7 \mathrm{~V}$, AINSEL and CLK/SEL			2VOUT	
Input High Voltage	1.2 V < VOUT < 5.5V, ON1 and ON2 (Note 8)	$0.8 \mathrm{~V}_{\text {OUT }}$			V
	VOUT $=5.5 \mathrm{~V}$, AINSEL and CLK/SEL	0.8 V OUT			
Logic Input Current	ON1, $\overline{\text { ON2, AINSEL and CLK/SEL }}$			1	$\mu \mathrm{A}$
Internal Oscillator Frequency	CLK/SEL = OUT	260	300	340	kHz
Oscillator Maximum Duty Cycle		80	85	90	\%
External Clock Frequency Range		200		400	kHz
CLK/SEL Pulse Width	Not tested	200			ns
CLK/SEL Rise/Fall Time	Not tested			100	ns

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

ELECTRICAL CHARACTERISTICS

(VOUT $=3.6 \mathrm{~V}, \mathrm{GND}=\mathrm{PGND}=\mathrm{CLK} / \mathrm{SEL}=\mathrm{ON} 1=\overline{\mathrm{ON} 2}=\mathrm{AINSEL}=\mathrm{AIN} 1=\mathrm{AIN2}=\mathrm{FB}=\mathrm{POKIN}, \mathrm{POUT}=\mathrm{OUT}, \mathrm{T}_{\mathbf{A}}=-\mathbf{4 0} 0^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 9)

PARAMETER	CONDITIONS		MIN	TYP MAX	UNITS
REFERENCE					
Reference Output Voltage	IREF $=0 \mathrm{~mA}$		1.225	1.275	V
DC-DC CONVERTER					
Output Voltage (Note 3)	$\mathrm{V}_{\mathrm{FB}}<0.1 \mathrm{~V}, \mathrm{CLK} / \mathrm{SEL}=\mathrm{OUT}$, includes load-regulation error		3.13	3.47	V
FB Regulation Voltage	Adjustable output, CLK/SEL = OUT		1.21	1.27	V
Output Voltage Lockout Range	(Note 3)		2.05	2.45	V
OUT Supply Current in Shutdown	$\mathrm{V} \overline{\mathrm{ON} 2}=3.6 \mathrm{~V}$			20	$\mu \mathrm{A}$
OUT Supply Current in Low-Power Mode (Note 6)	CLK/SEL = GND			90	$\mu \mathrm{A}$
OUT Supply Current in Low-Noise Mode (Note 6)	CLK/SEL = OUT, does not include switching losses			300	$\mu \mathrm{A}$
DC-DC SWITCHES					
Switch On-Resistance	N-channel	CLK/SEL = GND		0.6	Ω
		CLK/SEL = OUT		0.25	
	P-channel	CLK/SEL = OUT		0.5	
N-Channel Current Limit	CLK/SEL = OUT	MAX848	600	1100	mA
		MAX849	1100	1800	
	CLK/SEL = GND (Note 7)	MAX848	120	300	
		MAX849	250	550	
ADC					
Accuracy	$\mathrm{fcLK}=400 \mathrm{kHz}, 5 \mathrm{~ms}$ conversion			± 4	\% FSR
POWER-GOOD					
Internal Trip Level	Rising Vout, VPOKIN $<0.1 \mathrm{~V}$		2.95	3.10	V
External Trip Level	Rising VPOKIN		1.225	1.275	V
LOGIC CONTROL INPUTS					
Internal Oscillator Frequency	CLK/SEL = OUT		260	340	kHz
Oscillator Maximum Duty Cycle			80	90	\%

Note 1: Minimum operating voltage. Because the MAX848/MAX849 are bootstrapped to the output, it will operate down to a 0.7 V input.
Note 2: In low-power mode (CLK/SEL = GND), the output voltage regulates 1% higher than in low-noise mode (CLK/SEL = OUT or synchronized).
Note 3: The part is in start-up mode until it reaches this voltage level. Do not apply full-load current.
Note 4: Load regulation is measured from no load to full load, where full load is determined by the N-channel switch current limit.
Note 5: Start-up is tested with Figure 2's circuit. Output current is measured when the input and output voltages are applied.
Note 6: Supply current from the 3.34 V output is measured between the 3.34 V output and the OUT pin. This current correlates directly with actual battery supply current, but is reduced in value according to the step-up ratio and efficiency. Vout $=3.6 \mathrm{~V}$ to keep the internal switch open when measuring the current into the device.
Note 7: When $\mathrm{V}_{\text {CLK/SEL }}=0 \mathrm{~V}$, the inductor is forced into constant-peak-current, discontinuous operation. This is guaranteed by testing in Figure 2's circuit.
Note 8: ON1 and ON2 inputs have approximately 0.15V Out hysteresis.
Note 9: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NO-LOAD BATTERY CURRENT
vs. INPUT VOLTAGE

REFERENCE VOLTAGE
vs. TEMPERATURE

M AX849
EFFICIENCY vs. LOAD CURRENT (VOUT = 5V)

SHUTDOWN CURRENT
vs. INPUT VOLTAGE

REFERENCE VOLTAGE vs. REFERENCE CURRENT

MAX848
EFFICIENCY vs. LOAD CURRENT (VOUT = 3.3V)

START-UP VOLTAGE vs. LOAD CURRENT (VOUT = 3.3V, PWM MODE)

ADC LINEARITY ERROR vs. FULL-SCALE INPUT VOLTAGE

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

HEAVY-LOAD SWITCHING WAVEFORMS

$\mathrm{V}_{\text {IN }}=1.1 \mathrm{~V}$, IOUT $=200 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$
$\mathrm{A}=\mathrm{LX}$ VOLTAGE, 2V/div
$\mathrm{B}=$ INDUCTOR CURRENT, $0.5 \mathrm{~A} / \mathrm{div}$
$C=$ VOUT RIPPLE, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED

$2 \mathrm{~ms} / \mathrm{div}$
$\mathrm{V}_{\text {IN }}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$
A = LOAD CURRENT, 0 mA TO $200 \mathrm{~mA}, 0.2 \mathrm{~A}$ div
$\mathrm{B}=\mathrm{V}_{\text {OUT }}$ RIPPLE, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED

lout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$
$\mathrm{A}=\mathrm{V}_{\mathrm{IN}}, 1.1 \mathrm{~V}$ TO2.1V, $1 \mathrm{~V} / \mathrm{div}$
$B=V_{\text {OUT }}$ RIPPLE, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED

$\mathrm{A}=\mathrm{V}_{\mathrm{ON} 1}, 2 \mathrm{~V} /$ div
$\mathrm{B}=\mathrm{V}_{\text {out }}, 1 \mathrm{~V} / \mathrm{div}$
$\mathrm{C}=$ INPUT CURRENT, 0.2A/div

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
MAX849
GSM LOAD-TRANSIENT RESPONSE

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, COUT $=440 \mu \mathrm{~F}$
$\mathrm{A}=\mathrm{V}_{\text {OUT }}$ RIPPLE, $200 \mathrm{mV} / \mathrm{div}$, AC COUPLED
$B=$ LOAD CURRENT, 100 mA TO 1A, 0.5 A div, PULSE WIDTH $=577 \mu \mathrm{~s}$

MAX849
DECT LOAD-TRANSIENT RESPONSE

$2 \mathrm{~ms} /$ div
$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$, COUT $=440 \mu \mathrm{~F}$
$\mathrm{A}=\mathrm{V}_{\text {OUT }}$ RIPPLE, $200 \mathrm{mV} / \mathrm{div}$, AC COUPLED
$B=$ LOAD CURRENT, 50 mA TO $400 \mathrm{~mA}, 0.2 \mathrm{~A} / \mathrm{div}$, PULSE WIDTH $=416 \mu \mathrm{~s}$

M AX849 NOISE SPECTRUM
(VOUT $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.2 \mathrm{~V}$, RLOAD $=50 \Omega$)

M AX849 INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE

M AX849 PEAK INDUCTOR CURRENT vs. OUTPUT VOLTAGE

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Pin Description

PIN	NAME	FUNCTION
1	AIN1	ADC's Channel 1 Input. Analog input voltage range is 0.625 V to 1.875 V .
2	AIN2	ADC's Channel 2 Input. Analog input voltage range is 0 V to 2.5 V .
3	REF	Reference Output. Bypass with a $0.22 \mu \mathrm{~F}$ capacitor to GND.
4	GND	Ground. Use for low-current ground paths. Connect to PGND with a short trace.
5	OUT	Output Sense Input. The IC is powered from OUT. Bypass to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. Connect OUT to POUT through a 10Ω series resistor.
6	POKIN	Power-Good Comparator Input. Connect to GND for fixed threshold (VOUT x 0.9). To adjust the threshold, connect to a resistor divider from OUT to GND.
7	FB	Dual Mode DC-DC Converter Feedback Input. Connect to GND for fixed 3.3V output voltage. Connect to a resistor divider from OUT to GND to adjust the output voltage. Minimize noise coupling from switching signals to FB.
8	POK	Power-Good Output. This open-drain output is pulled low when the output voltage (VOUT) drops below the internally set threshold (fixed threshold), or when the voltage at POKIN drops below $\mathrm{V}_{\text {REF }}$ (adjustable threshold).
9	AINSEL	ADC's Input Channel Selector. Pull low to select AIN1 and drive high to select AIN2.
10	DATA	ADC's Serial Output. Pulsed output, RZ format. Full scale is fosc/2 (fclk/2 in external sync mode). The DATA output is low when $\mathrm{V}_{\text {CLK/SEL }}=0 \mathrm{~V}$ (PFM mode).
11	CLK/SEL	External Clock Input/Regulator's Switching Mode Selector. CLK/SEL = low: low-power, low-quiescent PFM mode. Delivers 100 mW of output power. CLK/SEL = high: low-noise, high-power PWM mode, switching at a constant frequency (300 kHz). CLK/SEL = driven with external clock: low-noise, high-power, synchronized PWM mode. The internal oscillator is synchronized to the external clock ($200 \mathrm{kHz} \sim 400 \mathrm{kHz}$). Turning the DC-DC converter on with $\mathrm{V}_{\text {CLK/SEL }}=0 \mathrm{~V}$ also serves as a soft-start function, since the peak inductor current is limited to 30% of the nominal value.
12	PGND	Source of the Internal N-Channel Power MOSFET. Connect to high-current ground path.
13	LX	Drain of the Internal N-Channel Power MOSFET and P-Channel Synchronous Rectifier
14	POUT	Source of the Internal P-Channel Synchronous Rectifier MOSFET. Connect an external Schottky diode from LX to POUT. Bypass to PGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close to the IC as possible.
15	$\overline{\mathrm{ON} 2}$	OFF Control Input. When $\mathrm{ON} 1=0$ and $\overline{\mathrm{ON} 2}=1$, the IC is off.
16	ON1	ON Control Input. When ON1 $=1$ or $\overline{\mathrm{ON} 2}=0$, the IC is on.

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Figure 1. Functional Diagram

Detailed Description

The MAX848/MAX849 combine a switching regulator, N-channel power MOSFET, P-channel synchronous rectifier, precision reference voltage, power-good indicator, and battery voltage monitor, all in a single monolithic device. The MAX848/MAX849 are powered directly from the output. The output voltage is factory preset to 3.3 V or adjustable from 2.7 V to 5 V with external resistors (Dual Mode ${ }^{\text {TM }}$ operation). These devices start from a low 1V input voltage and remain operational down to 0.7 V . The MAX848/MAX849 operate with either one to three $\mathrm{NiCd} / \mathrm{NiMH}$ cells or one Li-Ion cell.
At power-up, an internal low-voltage oscillator drives the N -channel power switch, and the output voltage slowly builds up. The oscillator has a 25% nominal duty cycle to prevent current build-up in the inductor. An output voltage in excess of the nominal 2.25 V lockout voltage activates the error comparator and internal timing circuitry. The device resumes operation in either pulse-frequency-modulation (PFM) low-power mode or pulse-width-modulation (PWM) low-noise mode, selected by the logic control, CLK/SEL. Figure 2 shows the
standard application circuit for the MAX849 configured in the high-power PWM mode.

On/Off Control
The MAX848/MAX849 are turned on or off by logic input pins ON1 and ON2 (Table 1). When ON1 $=1$ or $\overline{\mathrm{ON} 2}=0$, the part is on. When $\mathrm{ON} 1=0$ and $\overline{\mathrm{ON} 2}=1$, the part is off. Both inputs have logic trip points near $0.5 \times$ VOUT with $0.15 \times$ VOUT hysteresis.

Table 1. On/Off Logic Control

ON1	ON2	MAX848/MAX849
0	0	On
0	1	Off
1	0	On
1	1	On

Operating Modes
The MAX848/MAX849 operate in either PFM, PWM, or PWM synchronized to an externally applied clock signal. Table 2 lists each operating mode.

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Figure 2. 3.3V Preset Output
Table 2. Selecting Operating Mode

CLK/SEL	MODE
0	PFM
1	PWM
External clock	
$(200 \mathrm{kHz} \sim 400 \mathrm{kHz})$	Synchronized PWM

Low-Power PFM Mode

When CLK/SEL is pulled low, the MAX848/MAX849 operate in low-power, low-supply-current PFM mode. Pulsefrequency modulation provides the highest efficiency at light loads. The P-channel rectifier is turned off to reduce gate-charge losses, and the regulator operates in discontinuous mode. The N-channel power MOSFET is kept on until the inductor current ramps to 30% of the current limit. The inductor energy is delivered to the output capacitor when the switch turns off. A new cycle is inhibited until the inductor current crosses zero. Zero current detection is accomplished by sensing the LX voltage crossing the output voltage. Figure 3 shows the block diagram for the PFM controller.

Low-Noise PWM Mode

When CLK/SEL is pulled high, the MAX848/MAX849 operate in high-power, low-noise, current-mode PWM, switching at the 300 kHz nominal internal oscillator frequency. The internal rectifier is active in this mode, and the regulator operates in continuous mode. The N-channel power MOSFET turns on until either the output voltage is in regulation or the inductor current limit is reached 0.8 A for the MAX848 and 1.4 A for the MAX849). The switch turns off for the remainder of the cycle and the inductor energy is delivered to the output

Figure 3. Controller Block Diagram in PFM Mode
capacitor. A new cycle is initiated on the next oscillator cycle. In low-noise applications, the fundamental and the harmonics generated by the fixed switching frequency can easily be filtered. Figure 4 shows the block diagram for the PWM controller.
The MAX848/MAX849 enter synchronized current-mode PWM when a clock signal ($200 \mathrm{kHz}<\mathrm{fCLK}<400 \mathrm{kHz}$) is applied to CLK/SEL. The internal synchronous rectifier is active and the switching frequency is synchronized to the externally applied clock signal. For wireless applications, this ensures that the harmonics of the switching frequencies are predictable and can be kept outside the IF band(s). High-frequency operation permits low-magnitude output ripple voltage.
The MAX848/MAX849 are capable of providing a stable output even with a rapidly pulsing load (GSM, DECT), such as from a transmitter power amplifier in digital cordless phones (see Typical Operating Characteristics).
In PWM mode, the use of the synchronous rectifier ensures constant-frequency operation, regardless of the load current.

Setting the Output Voltage Externally

 The MAX848/MAX849 feature Dual Mode operation. The output voltage is preset to $3.3 \mathrm{~V}(\mathrm{FB}=0 \mathrm{~V}$), or it can be adjusted from 2.7 V to 5.5 V with external resistors R1, R2, and R3, as shown in Figure 5. To set the output voltage externally, select resistor R3 in the $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ range. The values for R1 and R2 are given by:$$
\text { R2 }=\text { R3 }\left(V_{\text {OUT }} / V_{\text {TRIP }}-1\right)
$$

$$
R 1=(R 3+R 2)\left(V_{\text {TRIP }} / V_{\text {REF }}-1\right)
$$

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Figure 4. Controller Block Diagram in PWM Mode
where $\mathrm{V}_{\text {REF }}=1.25 \mathrm{~V}$, VOUT is the desired output voltage, and VTRIP is the desired trip level for the powergood comparator.

Power-OK

The MAX848/MAX849 feature a power-good comparator. This comparator's open-drain output, POK, is pulled low when the output voltage falls below the nominal internal threshold level of 3 V with POKIN $=0 \mathrm{~V}$. To set the power-good trip level externally, refer to the Setting the Output Voltage Externally section.

Analog-to-Digital Converter (ADC)

The MAX848/MAX849 have an internal, two-channel, serial ADC. The ADC converts an analog input voltage into a digital stream available at the DATA pin. The converter skips clock pulses in proportion to the input voltage. Output format is a return-to-zero bit stream with a bit duration of $1 / \mathrm{f}$ cLK. At zero-scale input voltage, all pulses are skipped and DATA remains low; with a positive fullscale input voltage, no pulses are skipped; and at midscale, every other pulse is skipped. The ADC's clock is one-half of the externally applied clock signal or one-half of the internal 300 kHz clock available at LX. In PFM mode, the converter is not active and DATA is driven low. Channel 1, AIN1, has an input voltage range of 0.625 V to 1.875 V and is selected when AINSEL is low. Channel 2, AIN2, accepts inputs in the 0 V to 2.5 V range and is selected when AINSEL is pulled high (Figure 6).
The ADC is a switched-capacitor type; therefore, an anti-aliasing filter might be required at the inputs. Insert a $1 \mathrm{k} \Omega$ series resistor and a $0.01 \mu \mathrm{~F}$ filter capacitor in noisy environments.

Figure 5. Adjustable Output Voltage and Power-Good Trip Level

Figure 6. A/D Converter Block Diagram

Timer Function Implementation

Implement the necessary counter functions either with discrete hardware or with microcontroller ($\mu \mathrm{C}$) implementations. The output resolution depends on how many of the ADC clock pulses are counted, as shown in Figure 7.

Hardware Implementation

A complete hardware solution can be implemented using either two counters or an ASIC. Resolution depends on how many pulses are counted. The main advantage of the discrete hardware implementation is that accuracy is not affected by interrupt latency associated with the $\mu \mathrm{C}$ solution.

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Figure 7. Bit Stream at 1/2 Full Scale

When using two counters of the same length, as shown in Figure 8, one counter (A) just counts the A/D clock pulses (fosc/2), and the other counter (B) counts DATA output pulses. When counter A overflows (for example, after 256 clock cycles for an 8-bit counter), counter B is disabled. The controller reads the counter B output data and calculates the analog voltage present at the ADC's input.

All μ C Implementation

This implementation uses a $\mu \mathrm{C}$ timer and a counter. The timer and the counter are reset at the same time. The counter counts data-output pulses applied at its input. When the timer times out, an interrupt is asserted. The $\mu \mathrm{C}$ then reads the state of the counter register. The interrupt-handling overhead can cause the counter to count more pulses than desired. Accuracy depends on how long the $\mu \mathrm{C}$ needs to read the counter. No errors will occur if the counter is disabled within one clock period. Interrupt latency reduces accuracy. The main advantage of this implementation is that no external hardware is required.

Design Procedure

Inductor Selection

The MAX848/MAX849's high switching frequency allows the use of a small inductor. Use a $10 \mu \mathrm{H}$ inductor for the MAX849 and a $22 \mu \mathrm{H}$ inductor for the MAX848. Inductors with a ferrite core or equivalent are recommended; powder iron cores are not recommended for use with high switching frequencies. Make sure the inductor's saturation rating (the current at which the core begins to saturate and inductance starts to fall) exceeds the internal current limit: 0.8 A for the MAX848 and 1.4A for the MAX849. However, it is generally acceptable to bias the inductor into saturation by approximately 20% (the point where the inductance is 20% below the nominal value). For highest efficiency, use a coil with low DC resistance, preferably under $100 \mathrm{~m} \Omega$. To minimize radiated noise, use a toroid, pot core, or shielded inductor. See Table 5 for a list of suggested inductor suppliers.

Figure 8. Discrete Hardware Solution for Counting A/D Output Data Pulses

Diode Selection

The MAX848/MAX849's high switching frequency demands a high-speed rectifier. Schottky diodes, such as the 1 N5817 or MBR0520L, are recommended. Make sure the diode's current rating exceeds the maximum load current and that its breakdown voltage exceeds Vout.
The Schottky rectifier diode carries load currents only in the PFM operating mode, since the P-channel synchronous rectifier is disabled. Therefore, the current rating need not be high (0.5 A is sufficient). In PFM mode, the voltage drop across the rectifier diode causes efficiency loss. However, when operating in PWM mode, the internal P-channel synchronous rectifier is active and efficiency loss due to the rectifier diode is minimized.
For high-temperature applications, Schottky diodes may be inadequate due to their high leakage currents; use high-speed silicon diodes such as the MUR105 or EC11FS1. At heavy loads and high temperatures, the benefits of a Schottky diode's low forward voltage may outweigh the disadvantage of high leakage current. See Table 4 for a list of suggested diode suppliers.

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Figure 9. Momentary Pushbutton On/Off Switch

Capacitor Selection
 Input Bypass Capacitors

A $22 \mu \mathrm{~F}$, low-ESR input capacitor will reduce peak currents and reflected noise due to inductor current ripple. Smaller ceramic capacitors may also be used for light loads or in applications that can tolerate higher input ripple.

Output Filter Capacitors

Two $100 \mu \mathrm{~F}$ (single $100 \mu \mathrm{~F}$ for the MAX848), 10 V , lowESR, output filter capacitors typically exhibit 30 mV ripple when stepping up from 1.2 V to 3.3 V at 200 mA (100mA for the MAX848). Bypass the MAX848/MAX849 supply input, OUT, with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to GND. Also bypass POUT to PGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
The filter capacitors' equivalent series resistance (ESR) affects efficiency and output ripple. The output voltage ripple is the product of the peak inductor current and the output capacitor's ESR. Low-ESR, surface-mount tantalum capacitors are currently available from Sprague (595D series) and AVX (TPS series). Sanyo OS-CON organic-semiconductor, through-hole capacitors also exhibit very low ESR, and are especially useful for operation at cold temperatures. See Table 5 for a list of suggested capacitor suppliers.

Figure 10. Typical Phone Application

Applications Information

Using a Momentary On/Off Switch
A momentary pushbutton switch can be used to turn the MAX848/MAX849 on and off.
As shown in Figure 9, ON1 is pulled low and $\overline{\mathrm{ON} 2}$ is pulled high when the part is off. When the momentary switch is pressed, $\overline{\mathrm{ON} 2}$ is pulled low and the regulator turns on. The switch should be on long enough for the $\mu \mathrm{C}$ to exit reset. The controller issues a logic high to ON1, which guarantees that the part will stay on, regardless of the switch state.
To turn off the regulator, the switch is pressed and held. The controller reads the switch status and pulls ON1 low. The switch is released and $\overline{\mathrm{ON} 2}$ is pulled high.

Power Amplifier (PA) and Radio Supply
in a Typical Phone Application The MAX849 is an ideal power supply for the power amplifier (PA) and the radio used in digital cordless and PCS phones (Figure 10). The PA is directly powered by the MAX849 for maximum output swing. Postlinear regulators power the controller and the radio. In addition, they reduce switching noise and ripple. Table 3 lists the output power available when operating with one or more $\mathrm{NiCd} / \mathrm{NiMH}$ cells or one Li-lon cell.

Table 3. Available Output Power

NUMBER OF CELLS	INPUT VOLTAGE (V)	OUTPUT VOLTAGE: PA POWER SUPPLY (V)	OUTPUT POWER (W)
$1 \mathrm{NiCd} / \mathrm{NiMH}$	1.2	3.3	0.9
$2 \mathrm{NiCd} / \mathrm{NiMH}$	2.4	3.3	2.4
$2 \mathrm{NiCd} / \mathrm{NiMH}$	2.4	5.0	2.6
$3 \mathrm{NiCd} / \mathrm{NiMH}$ or $1 \mathrm{Li}-\mathrm{Ion}$	3.6	5.0	4.3

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

Figure 11. Power-On Reset Delay

Power-On Reset Delay

Adding a timing capacitor from POK to GND generates a power-on reset delay. The reset time constant is determined by the pull-up resistor and timing capacitor (Figure 11). When power is turned on, POK is low and the capacitor is shorted. When the output voltage reaches regulation, POK goes high and the capacitor slowly charges to the output voltage.
The timing resistor value depends on the controller's RESET input leakage current. The voltage drop across
the timing resistor should not exceed the difference between the output voltage and the $\mu \mathrm{C}$ reset threshold voltage. This resistor should be large enough to minimize the shutdown current.

$\boldsymbol{\mu C}$-Controlled Shutdown

The MAX848/MAX849 turn on when ON1 $=1$ or $\mathrm{ON} 2=0$. The $\mu \mathrm{C}$ monitors the battery voltage and turns off the device (forces ON1 low and ON2 high) when the battery is weak.

Layout Considerations

Due to high inductor current levels and fast switching waveforms, which radiate noise, proper PC board layout is essential. Protect sensitive analog grounds by using a star ground configuration. Minimize ground noise by connecting PGND, the input bypass capacitor ground lead, and the output filter capacitor ground lead to a single point (star ground configuration). Also, minimize lead lengths to reduce stray capacitance and trace resistance.
If an external resistor divider is used to set the output voltage (Figure 5), the trace from FB to the resistors must be extremely short and must be shielded from switching signals, such as CLK, DATA, or LX.

Table 4. Component Selection Guide

PRODUCTION	INDUCTORS	CAPACITORS	DIODES
Surface Mount	Sumida CDR63B, CD73, CDR73B, CD74B series Coilcraft DO1608, DO3308, DT3316 series	Matsuo 267 series Sprague 595D series AVX TPS series	Motorola MBR0520L
Through Hole	Sumida RCH654 series	Sanyo OS-CON series Nichicon PL series	Motorola 1N5817

Table 5. Component Suppliers

SUPPLIER	PHONE	FAX
AVX	USA: 803-946-0690 $800-282-4975$	$803-626-3123$
Coilcraft	USA: 847-639-6400	$847-639-1469$
Matsuo	USA: 714-969-2491	$714-960-6492$
Motorola	USA: 602-303-5454	$602-994-6430$
Sanyo	USA: 619-661-6835 Japan: 81-7-2070-6306	$619-661-1055$ $81-7-2070-1174$
Sumida	USA: 847-956-0666 Japan: 81-3-3607-5111	$847-956-0702$ $81-3-3607-5144$

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters Pin Configuration

TOP VIEW		
	-	$16 \mathrm{ON1}$
		15 ON2
	MAXIM	14 POUT
	MAX848	13 LX
		12 PGND
		11 CLKSEE
		10 data
		9 AINSEL
	Narrow SO	

1-Cell to 3-Cell, High-Power, Low-Noise, Step-Up DC-DC Converters

